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Abstract--The stress variational principle is employed to obtain the lower bound for the drag offered by the 
creeping flow of a power law fluid past a Newtonian fluid sphere. In spite of the unprescribed interfacial 
velocity, a bound-on-bound approach yields bounds that are close to the upper bound obtained by Mohan 
(1974). Furthermore, for very viscous drops (solid behavior) the theory gives lower bounds that differ 
considerably from those of Wasserman & Slattery (1964) and show good agreement with the results of 
Yoshioka & Adachi (1973). The approach presented in this work provides an insight into the method of 
analyzing multiphase flow situations involving non-Newtonian fluids. 

INTRODUCTION 

Variational principles for the creeping flow of a non-Newtonian fluid were developed by Johnson 
(1960) using calculus of variations and by Slattery (1972) using a function space approach. Similar 

principles were developed by Keller, Rubenfeld & Molyneux (1967), for the flow of a suspension 

of solid and fluid particles in a fluid medium. This analysis is limited to Newtonian flow situations. 

Wasserman & Slattery (1964) used the function space approach and obtained upper and lower 

bounds for the drag offered to a solid sphere by a power law fluid. However, for flow behavior 

indices close to unity, the lower bound is larger than the upper bound, and differs from that given 

by Yoshioka & Adachi (1973). Nakano & Tien (1968) analyzed the flow of a power law fluid past a 

Newtonian fluid sphere using a combination of Galerkin and variational methods. The functional 

used by them to obtain the upper bound is in error (Finlayson 1972). The analysis for the upper 

bound was improved by Mohan (1974) by including the contribution to the work function from 

the internal fluid. It was shown by Nakano & Tien that a lower bound based on the stress 
variational principle could not be obtained because of the unprescribed velocity at the fluid-fluid 

interface. For this same reason, the variational principles developed by Finlayson (1972) for 

non-Newtonian fluids can not be used to obtain a bound on the energy dissipation rate. The 

present work is concerned with demonstrating that a bound on bound can be obtained using the 
function space approach. The lower bound so obtained is close to the available upper bound. The 

technique is useful for studying multiphase flow problems in liquid-liquid extraction, phase 

separation and allied processes. A knowledge of the hydrodynamics can then be used to analyze 
the heat/mass transfer problem. 

STATEMENT OF THE PROBLEM 

Consider the steady state, axisymmetric, creeping flow of a power law fluid past a Newtonian 
fluid sphere. The fluids are assumed to be free from surfactant impurities. The physical properties 

of the fluids do not vary. The constitutive equations for the internal and external fluids are given 

by 

~" = 217, D ( internal) ,  [ 1 ] 

~" = 2 K  (2DzJD~ i)¢"-'~/2D (external), [2] 

where ~- is the extra stress tensor, D the rate-of-deformation, "O~ the viscosity of the Newtonian 
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internal fluid, and K and n are the consistency index and flow behavior index of the power law 
external fluid. When the external fluid is also Newtonian, the flow behavior index n equals unity 
in [2] and in all subsequent equations. Both the fluids are assumed incompressible. 

DEVELOPMENT OF THE STRESS VARIATIONAL PRINCIPLE 

The equations of continuity and motion can be written in tensorial form as 

v i, = 0, [31 

i~- p" + pl' = 0, [41 

where v i, r '~ and f are components of the velocity vector, extra stress tensor and body force, p 
is the pressure and p the density. 

Let us define the work function E, the stress variational functional H, and the complementary 
work function Ec for the flow field (internal and external) as 

fo" 
E = 7/(II) dlI ,  [5] 

I-l,=-fv F* dV+fs ('r*,,,n,-(p+ptk)*n,)v, dS,  [61 
(s )  (s )  

and 

fo II" dIL 
E~ = 4~(II,)" [7] 

The quantities II and II, are the second invariants of the rate-of-deformation and extra stress 
tensor, n the normal, and V(s) and S(s) represent the volume domain and bounding surface of 
the volume domain respectively. The velocity v, appearing on the R.H.S. of [6] is the actual 
velocity on the bounding surface. This velocity is unknown at the interface. The asterisk(*) 
denotes values obtained from a trial extra stress tensor satisfying the equation of motion [4]. 

For H~ evaluated on the basis of any trial stress function satisfying the equation of motion, it 

has been shown (Slattery 1972) that 

fv E d V -> H,.  [8] 
(s)  

From the homogeneous nature of the function E, we can write that 

tr(~ • D) = (n + 1)E, [9] 

which implies that the function E is proportional to the rate of energy dissipation per unit volume, 
the proportionality constant depending on the non-Newtonianism of the fluid. 

The quantity of interest is the total energy dissipation rate given by 

V~Fd = fv,+vo tr(7 • D) dV, [10] 

where V~ and Fd are the free stream velocity and drag force respectively. Combining [8] to [10], 

we get 

V~Fe >2H~, +(n + 1)H~o. [11] 
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This establishes the bound on the rate of energy dissipation. In the evaluation of H,i using [6] the 
bounding surface S (s) is the interface, on which the velocity is unspecified. For the evaluation of 
H,o, the bounding surfaces are a sphere of radius infinity on which the velocity is specified as the 
free stream velocity, and the interface where the velocity is unspecified. In the evaluation of the 
R.H.S. of inequality [11], the surface integrals over the interface for internal and external fluids 
do not cancel if n ~ 1 and pose a problem. However for a pseudoplastic fluid (n ~< 1), and inequality 

[11] becomes 

V~F~ >2H~i +(n  + 1)H,o-> (n + 1)(H,~ +H,o) = H.  [12] 

Evaluation of H poses no problem as the surface integrals at the interface now cancel. We have, 
therefore, 

[131 

where S (r = oo) denotes a sphere of radius infinity. Inequality [12] and equation [ 13] constitute the 
bound-on-bound principle. 

E V A L U A T I O N  O F  T H E  B O U N D - O N - B O U N D  

Employing the spherical polar co-ordinates, the dimensionless radial and tangential velocities 
are given in terms of the dimensionless stream function ~b by the relations, 

Vr 1 0~ 
v, = - ~  = - ~ sin 0 00 '  [14] 

V___2o = 1 05 
Vo=v~ r s i n ~ O r '  [15] 

where r = R /a ,  R the radius vector and a the drop radius. 
With this definition, the equation of motion for the internal fluid becomes 

where 

D 4 ¢ ,  = 0 ,  [16]  

D 4 f 0 2  s in0  0 [ 1 0 \ ) 2  = -=---~+-------y--- - -  
~Or r O 0 [ s i n O - ~ } ~  " 

[17] 

Assuming a trial stream function for the inside fluid as a set of complete functions (Nakano & 

Tien 1968), we have 

¢~ = (C,r  2 + C2r 3 + C3r4)(1 - z2), [18] 

where z = cos 0. 
This form satisfies the condition that as r ~ 0 ,  (Vr)*, and (vo)*, remain finite. The boundary 

condition is given by 

which yields 

( v , )~ =0  at r = l ,  [19] 

C, + C2 + C3 = O. [20] 

Substituting the stream function in [16], it can be shown that 
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C2 = O. [21] 

Using [20] and [21 ], the components of the extra stress function for the internal fluid become 

( ' l ' rr)~ : 8 ~ i ~  C,zr , 

(frO),* = --6"0,-~ C,(I - z2)l/2r, [22] 

(roo)~ = (r,~)~ = -4"0, V® C,zr. 
a 

The components of the trial extra stress function for the external fluid are chosen to be 

(Wasserman & Slattery 1964) 

(.r,o)~/K(-~)"= -AxB (1-  z2) '/2, 

('r,r)~/K = -(Cx ° + C'XB)Z, 
[231 

(roo)~lK = -(Fx D + F'XB)Z, 

(r,~)~/K = - (Ex  D + E'xB)z.  

Substituting these trial extra stress functions into the equation of motion for the external fluid, 

and equating 

0~(P + p~)~ = 0~(P + P(k)~ [24] 
OrO0 dOOr ' 

we get 

and 

E = F ,  

E ' = F ' ,  

A(B - 1) = C ' - F ' ,  

[25] 

Furthermore, since the trace of the extra stress tensor is zero, [23], [25] and [26] require that 

C = - 2 F ,  

C'  = - 2 F ' ,  [27] 

D = 2 .  

The trial extra stress fields are made to satisfy the jump momentum balance at the interface. If 
we assume the equilibrium theory of interracial tension, the sole effect of the interfacial tension is 
to bring about a discontinuity of the normal stress ( r ,  - p ) .  This manifests itself as a pressure 
difference p~ - po = 2(r/a at each point on the interface. The existence of the interfacial tension, 

(D - 2)(C - F)  = 0. [261 
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however, does not contribute to the tangential stress z,e and hence, (Happel & Brenner 1965) 

(~',~)*,=(¢,e)~ at r = l ,  

which yields 
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where the viscosity ratio X = r l i /K(V®/a)"- ' .  Using [25] and [27] and substituting the stress 
functions given by [23] in the equation of motion, the pressure distribution becomes 

(p + p4,)~ 
K(V=/a )"  

=-z [ ( (B  -3 )A + F'}x  B + Fx2] . 

We can now evaluate H given by [13] using [1], [2], [7], [22], [23] and [29]. 
Defining the drag coefficient Cd and Reynolds number Re as 

2Fd 
Cd = ~a--dr~p - , 

Re  - (2a )"V®2-"P 
K ' 

it can be shown that 

y = CaRe>2("-2'(n + 1){~ 
24 - 3 (F - C) - 16C12X 

n f' fo' } rc$(n+l)12n 4 
(n + 1) \ 2 /  j _ ,  U . o  x ux dz , [311 

where II*o is the dimensionless second invariant of the trial extra stress tensor for the external 
fluid given by 

II*o = (z/1"j')lff{K ( V . l  a )"} 2 = x28 {2A 2(1 - z ~) + z2( C '2 + 2F'2)} 

+ x B + 2 z ~ ( 2 C C ' + 4 F F ' ) + x B z 2 ( C 2 + 2 F 2 ) .  [32] 

The maximum of the R.H.S. of inequality [31] obtained by the choice of C1, C and B gives the 
"bound-on-bound" on Y. 

Solution 

A numerical technique is employed to evaluate the maximum of the expression to the right of 
inequality[31]. A search is made on the three variables C ,  C, and B using the method of 
Rosenbrock (Rosenbrock & Storey 1966) starting with the converged values for an external fluid 
of lower pseudoplasticity. The search in three mutually orthogonal directions is continued till the 
successive values of the right side of inequality [31] do not alter by more than 10 -5. The maximum 
so obtained gives the bound-on-bound YLa. 

DISCUSSION 

Figure 1 is a plot of the lower bound obtained in the present investigation (0.01 -< X -< 1000) 
and those of Wasserman & Slattery (1964) and Yoshioka & Adachi (1973) for a solid sphere. The 
upper bound shown in the figure was computed by Mohan (1974) by improving on the functional 
used by Nakano & Tien (1968) to take into consideration the contribution to the work function 

[29] 

[30] 

A = 6 C , X ,  [28] 
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Figure 1. Plot of the upper and lower bounds on Y vs the flow behavior index n for various viscosity ratios 
X, and the lower bounds due to Wasserman & Slattery (1964) and Yoshioka & Adachi (1973). 

from the internal fluid. It is seen that results of Yoshioka & Adachi show good agreement with the 

results of the present work for a viscosity ratio of 103 (solid behavior). However, the results of 

Wasserman & Slattery are quite low possibly due to the restricted form (B = 4) of the trial stress 

function chosen. The figure also reveals that very close bounds on the drag are obtained, even 

though the lower bound is a bound-on-bound. Thus, the bound-on-bound approach developed in 

this work for the lower bound together with that for the upper bound provides a means for 

developing techniques for analyzing multiphase flow situations involving non-Newtonian fluids. 
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